Protein analysis by mass spectrometry

Nick Polfer Department of Chemistry University of Florida

Proteins in biology

DNA encodes protein information

Same genetic make-up!

Natural History Museum (UF

Challenges

- highly complex (homo sapiens: 35,000 genes \Rightarrow 10⁶ proteins)
- dynamic protein expression
- very low sample amount (10-1,000 copies per cell)
- cannot amplify, such as with DNA (i.e., polymerase chain reaction)

 \Rightarrow need ultra-sensitive and quantitative analytical techniques

Mass spectrometer

Synopsis

- how do we measure the mass of molecules?
- what techniques are involved?
- what do mass spectra look like?
- how is peptide/protein analysis carried out?

Weighing mass

Gravitational force acts on spring

Down to $\mu g (10^{-6} g)$

Weighing molecules

Atomic mass unit (a.m.u.): 1.66x10⁻²⁴ g

Ionize molecules

Ignore gravitational force

F = ma = q(E+vB)

q = electric charge E = electric field v = ion velocity

B = magnetic field

 $F_{ele} = qE = 10^{-19} x E$ $F_{grav} = mg = 10^{-27} x$ 9.8

Mass spectrometer

Make ions Analyze mass

Ionize sample without destroying it Need vacuum: <u>⇒ **pumps**</u> Electrical power supplies, magnets, computer, etc.

Smallest charged particle: electron

FIGURE 1: J. J. Thomson and a cathode ray tube used to perform some of the first m/z measurements. Deflection of the electron was observed once the electric field was turned on.

Sir Joseph John Tompson – discovery of the electron - 1897

Siuzdak; Today's Chemist at Work, 2003, 47.

Contribution to science

Nobel Prize Winners

J.J. Thomson 1906 Physics

Francis W. Aston 1922 Chemistry

John B. Fenn

2002 Chemistry

Wolfgang Paul 1989 Physics

Hans G. Dehmelt 1989 Physics

Koichi Tanaka 2002 Chemistry "for their development of <u>soft</u> desorption ionization methods for mass spectrometric analyses of biological macromolecules'

Prepare sample

 α -cyano-4 hydroxycinnamic acid (CHCA)

Matrix crystals

<u>Matrix-Assisted Laser Desorption/Ionization</u>

To mass spectrometer

MALDI

analyte

ions

matrix ions

extraction grid

laser beam

analyte/matrix spot

cation

sample plate

Role of matrix is to <u>absorb laser energy</u> and to <u>transfer proton</u> to analyte molecule

[M+H]⁺

Molecule + proton

http://www.chm.bris.ac.uk/ms/theory/maldi-ionisation.html

lens

Ions from solution: <u>ElectroSpray</u> <u>Ionization</u>

ESI

Royal Society of Chemistry website

	hac

Element	Isotope	Abundance	Mass
Hydrogen	¹Н	100	1.007825
	² H	0.0115	2.014101
Carbon	¹² C	100	12.000000
	¹³ C	1.08	13.003355
Nitrogen	¹⁴ N	100	14.00307
	¹⁵ N	0.369	15.000109
Oxygen	¹⁶ O	100	15.994915
	¹⁷ O	0.038	16.999132
	¹⁸ 0	0.205	17.999116

Electrospray ionization (ESI)

Protein database identification

- Contain protein sequences of all known proteins
- Compare experimental peptide masses to *in silico* peptide masses

Experimei	ntal
Mass list	

Online tools and databases

Molecular Detective

http://www.moleculardetective.org/ Dr. Chen, UF

UniProt

- TrEMBL Non-annotated database
- SWISS-PROT

Annotated database

Protein Data Bank http://www.pdb.org/pdb/home/home.do

Other Protein Databases

Workshop (Chen)

- Download and install Moverz Bioinformatics Software
- Download 'Mass Spectra Examples from Rice Pollen Grain Proteins'
- 3. Open file

Cleavage by T Number of mas	rypsin: cuts C-term side of KR unless next residue is P s values searched: 16
Sequence Cove	des shown in Bold Red Good sequence
1 MSPAEA 51 LSVAYK 101 KICDGI 151 AENTLV. 201 AKQAFD 251 EAAKPE	SREE NVYMAKLABQ AERYEEMVEF MEKVAKTTDV GELTVEERNL NVIG ARASNRIIS SIEQKEESAG NEAVVASIKE YRSRIETELS KLL DSHLVSAIA AESKYYLEM KGDYHRYLAF FKSGAERKEA AYKS AQDIALADLP THEIRIGLA LMFSVFYYEI LMSEDRACNL DAIA ELDTLGEESY KDSTLIMQLL RDNIILWISD NAEDGGDEIK GGH
Show predi Sort Peptides	cted peptides also
Start - End 17 - 33 24 - 33 37 - 48 68 - 79 160 - 176 177 - 196 203 - 221 222 - 231	Observed Mr (expt) Mr (calc) Delta Miss Sequence 2131.936 2130.931 2130.9601 -0.0288 1 K.LAEQARYEMVEYMEK.V 1335.5358 1334.5265 1333.5570 0.9715 0 R.YEEMVEYMEK.V 1348.5611 1347.5738 1347.6518 -0.0780 0 K.TEDVGELTVER.N 1418.6469 1417.6396 1417.7412 -0.1016 1 R.ITSIEQKEESR.O 1818.9037 1817.8964 187.955 -0.0671 0 R.SAQDIALDEPTHPIR.L 2331.1365 2330.1292 2330.1947 -0.0654 0 R.LGLALNFSVFYTEILNSPDR.A 2114.8756 2113.9651 -0.1028 0 K.OAPDALAEDTUGESKTK.D 1189.6518 1188.6536 563 -0.091 0 K.DSTLIMQUR.D
No match to:	1323.5601, 1330.7257, 1490.6627, 1772.8976, 1783.8466, 1828.9032, 2367.1430, 2550.0961

